# Infra-red Spectra of Carbohydrates. Part IV.\* Characterisation of Furanose Derivatives.

By S. A. BARKER and R. STEPHENS.

[Reprint Order No. 5660.]

Compounds containing a furanose or hydrofuranol ring are shown to exhibit infra-red absorption of types A, B, C, and D at  $924 \pm 13$ ,  $879 \pm 7$ ,  $858 \pm 7$ , and  $799 \pm 17$  cm<sup>-1</sup>, respectively. Similar absorption is exhibited by derivatives containing two such fused rings or a hydrofuranol ring fused to a pyranose ring (3:6-anhydro-derivatives). Tentative assignments are made.

PREVIOUS work on the infra-red spectra of saturated five-membered ring systems has been concerned mainly with the assignment, to various modes of ring and methylene vibrations, of the absorption peaks of cyclopentane (Aston, Schumann, Fink, and Doty, J. Amer. Chem. Soc., 1941, 63, 2029; Miller and Inskeep, J. Chem. Phys., 1950, 18, 1519; Kilpatrick, Pitzer, and Spitzer, J. Amer. Chem. Soc., 1947, 69, 2483; Tschamler and Voetter, Monatsh., 1952, 83, 303, 1228) and of tetrahydrofuran (Tschamler and Voetter, loc. cit.). The precise conformation of such systems, vital for any rigid assignment, has been much discussed.

\* Part III, J., 1954, 4211.

In a regular pentagon the interior angles are very close to the tetrahedral value  $(108^\circ; cf. 109^\circ 28')$  so the planar structure is stabilised by forces tending to maintain tetrahedral bond angles. Conversely, the repulsions between the hydrogen atoms of neighbouring methylene groups, at a maximum in the planar structure, tend to produce torsional forces around the C-C bonds which would pucker the ring (Miller and Inskeep, *loc. cit.*). It is now generally agreed that neither *cyclopentane* nor tetrahydrofuran has a completely planar ring, but that the puckering is so small (Kilpatrick, Pitzer, and Spitzer, *loc. cit.*, calculate for *cyclopentane* a maximum out-of-plane displacement of 0.2 Å) that, with a few exceptions, the selection rules for a planar ring can be followed. On this basis Tschamler and Voetter (*loc. cit.*) made the assignments of ring frequencies given in Table 1.

### TABLE 1. Assignments of ring frequencies.

| Frequencies (cm. <sup>-1</sup> ) |                                                                |  |  |
|----------------------------------|----------------------------------------------------------------|--|--|
| cloPentane I                     | etrahydrofuran                                                 |  |  |
| 207; 283<br>546?                 | $215; 276 \\596$                                               |  |  |
| 886<br>030 : 1207 10             | 913<br>028, 1071 : 1174                                        |  |  |
| (                                | <i>clo</i> Pentane 7<br>207; 283<br>546?<br>886<br>030; 1207 1 |  |  |

The present work, which is confined to the frequency range 710—1000 cm.<sup>-1</sup>, is concerned with compounds which can be regarded as derivatives of tetrahydrofuran, such as the furanose forms of sugars and certain anhydro-derivatives of polyhydric alcohols; it illustrates how a series of infra-red absorption peaks may be useful in the identification of such a ring system, whether free, or fused either to a similar ring or to a pyranose ring.

### EXPERIMENTAL

The spectra were measured with a Grubb-Parsons single-beam spectrometer, with a sodium chloride prism, the "Nujol" mull technique being used. The Tables show the frequencies (cm.<sup>-1</sup>) of the absorption bands, together with indications of their relative intensities.

#### DISCUSSION

Identification of a Furanose or Hydrofuranol Ring.—All those compounds examined (excluding tetrahydrofuran itself) having a single furanose or hydrofuranol ring showed type A absorption at 924  $\pm$  13 cm.<sup>-1</sup> and type D absorption at 799  $\pm$  17 cm.<sup>-1</sup> (Table 2). In addition most of these compounds also showed type B absorption at 879  $\pm$  7 cm.<sup>-1</sup> and type C at 858  $\pm$  7 cm.<sup>-1</sup>.

When two such five-membered rings were fused together (Table 3) absorption attributable to type A and type D generally appeared in the form of doublets, still, however, with their respective average frequencies at 917  $\pm$  15 and 798  $\pm$  16 cm.<sup>-1</sup>. In the case of I : 4-3 : 6-dianhydro-D-mannitol, where two identical hydrofuranol rings are fused together, single absorption peaks only were observed at 923 and 816 cm.<sup>-1</sup>, respectively. In addition most of these compounds (Table 3) also showed absorption of type B at 880  $\pm$  5 cm.<sup>-1</sup> and of type C at 848  $\pm$  13 cm.<sup>-1</sup>.

Where a hydrofuranol ring is fused to a pyranose ring (Table 4) absorption peaks attributable wholly or in part to vibrations associated with types A (not distinguished from types 1 or 2b), B (870  $\pm$  7 cm.<sup>-1</sup>), C (838  $\pm$  16 cm.<sup>-1</sup>), and D (798  $\pm$  21 cm.<sup>-1</sup>) can still be found.

Assignment.—(i) Type A. This absorption can be assigned to the symmetrical ringbreathing frequency. The fact that, in this range, the strongest polarised Raman shifts appear at 886 cm.<sup>-1</sup> in the spectrum of cyclopentane and at 913 cm.<sup>-1</sup> in that of tetrahydrofuran is strong evidence in support of such an assignment (Tschamler and Voetter, *loc. cit.*). With two dissimilar hydrofuranol rings fused together, the "doubling" observed in type A absorption is to be expected because of interactions between the rings.

When a hydrofuranol ring is fused to a pyranose ring as in the case of 3:6-anhydrosugar derivatives (Table 4), the five-membered ring will tend to exist as nearly planar as possible, the pyranose ring adopting either the 1C chair form or the 1B boat form, depending on which form has the smallest total of non-bonded interactions between its polar groups TABLE 2. Furan derivatives.



\* C-O stretching mode of methyl and ethyl ethers and acetates.

 <sup>†</sup> CH<sub>2</sub> rocking of ethyl group.
 <sup>‡</sup> Cf. Shreve, Heether, Knight, and Swern, Anal. Chem., 1951, 23, 277. § Syrup. TABLE 3. Derivatives containing two fused hydrofuranol rings.



(Foster, Overend, and Vaughan, J., 1954, 3625). Under such conditions, the main absorption peaks to be expected in this region are those analogous to types A, B, C, and D of a single hydrofuranol ring and those of types 1, 2a, 2b, 2c, and 3 of a single pyranose ring. It will be recalled (Barker, Bourne, Stacey and Whiffen, J., 1954, 171; Barker, Bourne, Stephens, and Whiffen, J., 1954, 3468) that type 1 at ca. 910 cm.<sup>-1</sup> and type 3 at ca. 760 cm.<sup>-1</sup> have been assigned to vibrations of the pyranose ring, while types 2a at ca. 830 cm.<sup>-1</sup>, 2b at ca. 890 cm.<sup>-1</sup>, and 2c at 870 cm.<sup>-1</sup> were believed to involve the deformation modes of an equatorial  $C_{(1)}$ -H, of an axial  $C_{(2)}$ -H and  $C_{(4)}$ -H), respectively. Table 5 shows the various equatorial and axial dispositions of the carbon hydrogen bonds around the pyranose ring derivative adopting a given conformation. No attempt has been made in the case of the 3: 6-anhydro-sugar derivatives to distinguish absorption attributable to type A of the hydrofuranol ring from that of type 1 or 2b of the pyranose ring since they appear within the same range.

(ii) Type D. This absorption can be assigned tentatively to a carbon-hydrogen deformation mode where the hydrogen is present on a carbon atom directly attached to a ring-oxygen atom of a furanose or hydrofuranol ring. Whereas in the pyranose ring the carbon-hydrogen bond can be either axial or equatorial, such bonds are in relatively equivalent positions where the carbon atom is incorporated in a furanose ring and a general differentiation between  $\alpha$ - and  $\beta$ -furanose glycosides is not to be expected on such a basis. Table 2 shows that a carbon-hydrogen bond incorporated in the grouping (I) displays an

absorption frequency (type D) relatively independent of X (other than X = H). Further evidence for such an assignment is that while methyl*cyclo*pentane does not show type D absorption, methyltetrahydrofuran (Barrow and Searles, J. Amer. Chem. Soc., 1953, 75, 1175) and tetrahydrofurfuryl alcohol do so at 800 (I) and 810 cm.<sup>-1</sup>, respectively. It is interesting that in the 3:6-anhydro-aldo-

pyranose derivatives (Table 5), the pyranose ring does not apparently interfere with type D absorption and still retains its symmetrical type 3 ring-breathing frequency at 747  $\pm$  11 cm.<sup>-1</sup>.

(iii) Types B and C. It may be that absorptions of types B and C in general arise from

| $CH_2$                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ć1                | I2        |            |              | ÇН                | 2                          |                 |
|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------|------------|--------------|-------------------|----------------------------|-----------------|
|                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | H                 |           |            | I            | 10                | _0_H                       |                 |
|                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ň                 | Оон       |            |              | $\langle \rangle$ | О н                        |                 |
|                                                                          | ;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | но                | ОМ        | e          |              | н                 |                            | e               |
| п Оп<br>Mothul 2: 6 ophudeo                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | H<br>M-4119       |           |            |              | Н                 | ОН                         |                 |
| glucopyranoside                                                          | -α-D-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Metnyl 3          | : 6-anhyd | ro-<br>ide | Meth         | yl 3:6            | -anhydro-<br>vranoside     | α-D-            |
| 8                                                                        | $r_{r}$ $r_{r$ |                   |           |            |              |                   |                            |                 |
| Compound and                                                             | Technolog C. O.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | T                 |           |            |              | Pound             |                            | <b>-</b>        |
| probable pyranose                                                        | stretching of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | L and             | Type B    | Other      | Type C       | Type              | Type                       | Type            |
| conformation                                                             | methyl ethers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2b                | (or 2c)   | peaks      | (or 2a)      | 2a                | D                          | 3               |
| Methyl a-D-glucopyran-<br>oside (C1)                                     | 992 vs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 896 s             | _         | -          | · _ /        | 840 s             | —                          | 745 s           |
| 3:6-anhydro-(1C)                                                         | 987 vs, 942 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 909 vs,<br>892 vs | 868 s     |            | 842 s        |                   | 815 vs                     | 742 vs          |
| 2-deoxy- (C1)                                                            | 966 s, 914 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 896 s             |           | 870 s *    |              | 837 vs            |                            | 760 s           |
| 3 : 6-annydro-2-de-<br>oxy- (1C)                                         | 997 s, 978 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 916 vs,<br>909 vs | 868 vs    |            | 843 vs       |                   | 826 s,<br>818 s,<br>790 vs | 737 s           |
| Methyl a-D-manno-                                                        | 972 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 914 m             | 888 w     |            |              | 843 m             |                            | 808 s           |
| pyranoside (C1)                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |           |            | ~            |                   |                            |                 |
| 3:6-annydro-(1C)                                                         | 990 s, 967 m,<br>949 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 919 m,<br>913 c   | 878 s     |            | 849 m        |                   | 801 s                      | 757 s           |
| 3:6-anhydro-2-O-                                                         | 987 vs. 973 vs.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 929 vs.           | 873 vs    |            | 853 s        |                   | 823 vs                     | 767 s.          |
| methyľ- (1C)                                                             | 963 vs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 907 s             |           |            |              |                   | 810 vs                     | 754 s           |
| 3 : 6-anhydro-2 : 4-di-<br>O-methyl (1C)                                 | 984 m, 965 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 935 s,<br>901 m   | 878 m     |            | 854 w        |                   | 811 m                      | 752 m           |
| Methyl $\beta$ -D-manno-<br>pyranoside † (C1)                            | 947 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 928 m,<br>896 m   | 875 s     | 830 m      |              |                   |                            | 795 vs          |
| 3 : 6-anhydro- (1C or<br>1B)                                             | 997 vs, 984 vs, 963 vs. 956 vs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 897 m             | 870 s     | 814 vs     | [814 vs]     |                   | 778 vs                     | 739 m           |
| 3:6-anhydro-2:4-di-                                                      | 997 vs, 955 vs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 901 m,<br>892 m   | 876 m     | 826 s      | 859 m        |                   | 775 s                      | 753 m           |
| Methyl a-D-galacto-                                                      | 966 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 923 s             | 868 s     | —          |              | 818 vs            |                            | 784 vs          |
| 3:6-anhydro-(1C)                                                         | 987 m, 966 vs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 924 vs,<br>903 vs | 865 w     | 847 s      | 835 m        |                   | 768 s                      | 734 vs          |
| 3: 6-anhydro-2-de-                                                       | 951 vs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 914 vs            | 860 vs    | 850 vs *   | 834 vs       |                   | 797 vs                     | 754 s           |
| Methyl $\beta$ -D-galacto-                                               | 981 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 940 s,<br>887 s   | 868 s     | 821 vw     |              |                   |                            | 782 vs          |
| 3 : 6-anhydro-2 : 4-di-<br>O-methyl- (1B)                                | 970 vs, 944 vs,<br>928 vs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 907 vs,<br>898 vs | 861 s     | 811 s      | [811 s]      |                   | 767 s                      | 733 s           |
| Mean and standard de-<br>viation of <b>3</b> :6-an-<br>hydro-derivatives |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | 870 ± 7   | —          | $838 \pm 16$ |                   | $798\pm21$                 | 747 <u>+</u> 11 |
|                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |           |            |              |                   |                            |                 |

\* CH<sub>2</sub> rocking (deoxy-group).

† Syrup.

 TABLE 5. Disposition of carbon-hydrogen bonds in a 3 : 6-anhydropyranose derivative.

| <b>3</b> : 6-Anhydro-derivative of : | Conformation<br>of pyranose<br>ring | Equatorial<br>hydrogens on<br>carbon atoms : | Axial<br>hydrogens on<br>carbon atoms : | Expected<br>type 2<br>absorption |
|--------------------------------------|-------------------------------------|----------------------------------------------|-----------------------------------------|----------------------------------|
| α-D-Glucopyranose                    | 10                                  | 2, 3, 4, 5                                   | 1                                       | 2b, 2c                           |
| α-D-Mannopyranose                    | 1C                                  | 3, 4, 5                                      | 1, 2                                    | 2b, 2c                           |
| β-D-Mannopyranose                    | 1C                                  | 1, 3, 4, 5                                   | 2                                       | 2a, 2c                           |
| β-D-Mannopyranose                    | 1B                                  | 2, 3, 4, 5                                   | 1                                       | 2b, 2c                           |
| α-D-Galactopyranose                  | 1C                                  | 2, 3, 5                                      | 1, 4                                    | 2b, 2c                           |
| $\beta$ -D-Galactopyranose           | 1B                                  | 1, 3, 5                                      | 2, 4                                    | 2a, 2c                           |

modes of vibration involving the skeletal stretching of the substituents, the latter type being possibly more concerned with the OH group and the former with side chains of the type C·CH(OH)·CH<sub>2</sub>·OH (cf. Kohlrausch, Reitz, and Stockmair, Z. physikal. Chem., 1936, B, 32, 229; Barrow, J. Chem. Phys., 1952, 20, 1739). Finally, since it is unlikely that in fused systems one ring can be regarded as the side chain of the other, it is probable that

# [1954] Infra-red Spectra of Inorganic Phosphorus Compounds. Part II. 4555

type B absorption in such systems is due to the rocking vibration of the methylene group in the hydrofuranol ring, although in the case of some 3:6-anhydro-derivatives (Table 5) type 2c absorption is to be expected in this same region.

The authors are indebted to Professor M. Stacey, F.R.S., Dr. E. J. Bourne, and Dr. D. H. Whiffen for their close interest in this work and to Dr. W. G. Overend and Dr. G. Vaughan for gifts of **3**: **6**-anhydro-derivatives. They also thank the British Rayon Research Association and Courtaulds' Scientific and Educational Trust Fund for the award of scholarships (to S. A. B. and R. S., respectively), and the Royal Society for a grant for the purchase of the spectrometer.

CHEMISTRY DEPARTMENT, THE UNIVERSITY, Edgbaston, Birmingham, 15.

[Received, August 17th, 1954.]

------